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Definitions: 
- A language L is ​recognizable​ iff there exists a Turing Machine (TM) M such that L(M) = 

L. Here, M is called a ​recognizer​. 
Note:​ M will halt and accept only the strings in that language. For strings not in that 
language, M will either reject it, in which it will halt, or M will loop. With recognizers, there 
is no requirement to halt. 
Note:​ On a given language L, a recognizer will either 

a. Halt and accept L or 
b. Halt and reject L or 
c. Loop on L 

Note:​ If a TM, M, doesn’t accept a language, L, it doesn’t mean that it rejects L. It could 
reject L or it could loop on L 

- A language is ​decidable​ iff there exists a TM M such that L(M) = L and M halts on every 
input. Here, M is called a ​decider​. 

- U, the universal language, = {⟨M, x⟩ | M accepts x}. 
U​ is recognizable but not decidable. 

- M​u​, the universal TM, takes ⟨M, x⟩ as input and simulates M on x. 
- The halting problem, denoted as ​H​, is H = {⟨M, x⟩ | M halts on x}. 

H is recognizable but not decidable. 
General Turing Reduction: 

- Reduction allows us to easily prove more languages are undecidable or unrecognizable. 
- Let P and Q be languages. 
- P ​Turing-reduces​ to Q, denoted as P ≤​T​ Q, if there exists an algorithm for P that uses 

an algorithm for Q as a “black box”. 
- Here are the general steps to prove that L is undecidable by using reduction: 

1. Assume L is decidable. 
2. Therefore, there is a TM M1 that decides it.  
3. Show that we can construct a TM M2 that uses M to decide U or some other 

undecidable problem.  
4. Since this contradicts that U is undecidable, L is undecidable.  

Mapping Reduction: 
- Definition:​ Let P and Q ⊆ Σ​*​ be languages. P is ​mapping-reducible​ to Q, denoted as  

P ≤​m​ Q, iff there exists a computable function, f : Σ​*​ → Σ​*​, such that x ∈ P iff f(x) ∈ Q. 
The function f is called the reduction of P to Q. 
Note:​ The function, f, does not have to be, and is usually not, onto. 
Note: ​The function, f, must be computable. 
To demonstrate a computable function, we will typically write a little program or describe 
in English how to perform the transformation that f is supposed to do. 
Note:​ f maps yes-instances of P to yes-instances of Q and no-instances of P to 
no-instances of Q. 

- In general, when we are mapping-reducing language P to language Q, f should take an 
input of P as an input and output something that is an input of Q. 

- Theorems: 
Suppose that P ≤​m​ Q 

1. If Q is decidable, then P is decidable. 
This is because we need to use a given solution to Q to solve P. If Q is 
decidable, then that means it halts on every input. Since P uses the output of Q 
on the input, P must halt on every input, too. Hence, P is decidable. 
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2. If P is undecidable, then Q is undecidable. 
This is because we need Q to solve P. If P isn’t solvable, then neither is Q. 

3. If Q is recognizable, then P is recognizable. 
This is because we need to use a given solution to Q to solve P. If Q is 
recognizable, then that means it either accepts, rejects or loops on every input. 
Since P uses the output of Q on the input, P must accept, reject or loop on every 
input, too. Hence, P is recognizable. 

4. If P is unrecognizable, then Q is unrecognizable. 
This is because we need Q to solve P. If P isn’t solvable, then neither is Q. 

5. If P ≤​m​ Q, then !P ≤​m​ !Q, where !P is the complement of P and !Q is the 
complement of Q. 

Note:​ If P ≤​m​ Q and Q is unrecognizable, it doesn’t tell us if P is recognizable or not. 
Note:​ If P ≤​m​ Q and Q is undecidable, it doesn’t tell us if P is decidable or not. 

- To prove that a language P is unrecognizable or undecidable, it suffices to prove that  
U ≤​m​ P, for undecidable, and !U ≤​m​ P, for unrecognizable. 


