
Reductibility Notes
1

Definitions:
- A language L is ​recognizable​ iff there exists a Turing Machine (TM) M such that L(M) =

L. Here, M is called a ​recognizer​.
Note:​ M will halt and accept only the strings in that language. For strings not in that
language, M will either reject it, in which it will halt, or M will loop. With recognizers, there
is no requirement to halt.
Note:​ On a given language L, a recognizer will either

a. Halt and accept L or
b. Halt and reject L or
c. Loop on L

Note:​ If a TM, M, doesn’t accept a language, L, it doesn’t mean that it rejects L. It could
reject L or it could loop on L

- A language is ​decidable​ iff there exists a TM M such that L(M) = L and M halts on every
input. Here, M is called a ​decider​.

- U, the universal language, = {⟨M, x⟩ | M accepts x}.
U​ is recognizable but not decidable.

- M​u​, the universal TM, takes ⟨M, x⟩ as input and simulates M on x.
- The halting problem, denoted as ​H​, is H = {⟨M, x⟩ | M halts on x}.

H is recognizable but not decidable.
General Turing Reduction:

- Reduction allows us to easily prove more languages are undecidable or unrecognizable.
- Let P and Q be languages.
- P ​Turing-reduces​ to Q, denoted as P ≤​T​ Q, if there exists an algorithm for P that uses

an algorithm for Q as a “black box”.
- Here are the general steps to prove that L is undecidable by using reduction:

1. Assume L is decidable.
2. Therefore, there is a TM M1 that decides it.
3. Show that we can construct a TM M2 that uses M to decide U or some other

undecidable problem.
4. Since this contradicts that U is undecidable, L is undecidable.

Mapping Reduction:
- Definition:​ Let P and Q ⊆ Σ​*​ be languages. P is ​mapping-reducible​ to Q, denoted as

P ≤​m​ Q, iff there exists a computable function, f : Σ​*​ → Σ​*​, such that x ∈ P iff f(x) ∈ Q.
The function f is called the reduction of P to Q.
Note:​ The function, f, does not have to be, and is usually not, onto.
Note: ​The function, f, must be computable.
To demonstrate a computable function, we will typically write a little program or describe
in English how to perform the transformation that f is supposed to do.
Note:​ f maps yes-instances of P to yes-instances of Q and no-instances of P to
no-instances of Q.

- In general, when we are mapping-reducing language P to language Q, f should take an
input of P as an input and output something that is an input of Q.

- Theorems:
Suppose that P ≤​m​ Q

1. If Q is decidable, then P is decidable.
This is because we need to use a given solution to Q to solve P. If Q is
decidable, then that means it halts on every input. Since P uses the output of Q
on the input, P must halt on every input, too. Hence, P is decidable.

Reductibility Notes
2

2. If P is undecidable, then Q is undecidable.
This is because we need Q to solve P. If P isn’t solvable, then neither is Q.

3. If Q is recognizable, then P is recognizable.
This is because we need to use a given solution to Q to solve P. If Q is
recognizable, then that means it either accepts, rejects or loops on every input.
Since P uses the output of Q on the input, P must accept, reject or loop on every
input, too. Hence, P is recognizable.

4. If P is unrecognizable, then Q is unrecognizable.
This is because we need Q to solve P. If P isn’t solvable, then neither is Q.

5. If P ≤​m​ Q, then !P ≤​m​ !Q, where !P is the complement of P and !Q is the
complement of Q.

Note:​ If P ≤​m​ Q and Q is unrecognizable, it doesn’t tell us if P is recognizable or not.
Note:​ If P ≤​m​ Q and Q is undecidable, it doesn’t tell us if P is decidable or not.

- To prove that a language P is unrecognizable or undecidable, it suffices to prove that
U ≤​m​ P, for undecidable, and !U ≤​m​ P, for unrecognizable.

